Hormonal modulation of two coordinated rhythmic motor patterns.

نویسندگان

  • Debra E Wood
  • Melissa Varrecchia
  • Michael Papernov
  • Denise Cook
  • Devon C Crawford
چکیده

Neuromodulation is well known to provide plasticity in pattern generating circuits, but few details are available concerning modulation of motor pattern coordination. We are using the crustacean stomatogastric nervous system to examine how co-expressed rhythms are modulated to regulate frequency and maintain coordination. The system produces two related motor patterns, the gastric mill rhythm that regulates protraction and retraction of the teeth and the pyloric rhythm that filters food. These rhythms have different frequencies and are controlled by distinct mechanisms, but each circuit influences the rhythm frequency of the other via identified synaptic pathways. A projection neuron, MCN1, activates distinct versions of the rhythms, and we show that hormonal dopamine concentrations modulate the MCN1 elicited rhythm frequencies. Gastric mill circuit interactions with the pyloric circuit lead to changes in pyloric rhythm frequency that depend on gastric mill rhythm phase. Dopamine increases pyloric frequency during the gastric mill rhythm retraction phase. Higher gastric mill rhythm frequencies are associated with higher pyloric rhythm frequencies during retraction. However, dopamine slows the gastric mill rhythm frequency despite the increase in pyloric frequency. Dopamine reduces pyloric circuit influences on the gastric mill rhythm and upregulates activity in a gastric mill neuron, DG. Strengthened DG activity slows the gastric mill rhythm frequency and effectively reduces pyloric circuit influences, thus changing the frequency relationship between the rhythms. Overall dopamine shifts dependence of frequency regulation from intercircuit interactions to increased reliance on intracircuit mechanisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural coordination: Taking the lead from a model

Patterned motor activity generated by central neuronal networks underlies such basic behaviors as locomotion, breathing and chewing [1]. Much attention has been paid to the mechanisms that produce oscillations within such neural networks, and how modulation of the intrinsic membrane properties of the component neurons and their synaptic interactions reconfigures the networks to produce adaptive...

متن کامل

Heartbeat control in the medicinal leech: a model system for understanding the origin, coordination, and modulation of rhythmic motor patterns.

We have analyzed in detail the neuronal network that generates heartbeat in the leech. Reciprocally inhibitory pairs of heart interneurons form oscillators that pace the heartbeat rhythm. Other heart interneurons coordinate these oscillators. These coordinating interneurons, along with the oscillators interneurons, form an eight-cell timing oscillator network for heartbeat. Still other interneu...

متن کامل

Sensorimotor Integration an a Small Motor Circuit

Rhythmic motor patterns, which underlie behaviors such as mastication, respiration and locomotion, are generated by specialized neural circuits called central pattern generators (CPGs). Although CPGs can generate their rhythmic motor output in the absence of rhythmic input, these motor patterns are modified by rhythmic sensory feedback in vivo. Furthermore, although the importance of sensory fe...

متن کامل

Sensorimotor Integration in a Small Motor Circuit

Rhythmic motor patterns, which underlie behaviors such as mastication, respiration and locomotion, are generated by specialized neural circuits called central pattern generators (CPGs). Although CPGs can generate their rhythmic motor output in the absence of rhythmic input, these motor patterns are modified by rhythmic sensory feedback in vivo. Furthermore, although the importance of sensory fe...

متن کامل

Coordination Dynamics of Large-scale Neural Circuitry Underlying Rhythmic Sensorimotor Behavior

In coordination dynamics, rate is a nonspecific control parameter that alters the stability of behavioral patterns and leads to spontaneous pattern switching. We used fMRI in conjunction with measures of effective connectivity to investigate the neural basis of behavioral dynamics by examining two coordination patterns known to be differentially stable (synchronization and syncopation) across a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 104 2  شماره 

صفحات  -

تاریخ انتشار 2010